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Abstract-The onset of instability in a fluid layer which is subjected to a sudden change in surface 
temperature is analysed by a modified version of the frozen time hypothesis. The assumption that for large 
Prandtl number the temperature disturbances are confined to the effective thermal depth leads to a 
considerable simplification in the formulation of the stability problem. The effect of the Rayleigh number on 
the onset time is discussed and clearly explained. The relation between the Rayleigh number and the 

wavenumber predicted here agrees remarkably well with the extant amplification theory. 
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NOMENCLATURE 

horizontal dimensionless wavenumber; 
components of a ; 
coefficients of the power series; 
constants used in the general solution of the 
perturbation equations; 

d/di ; 
rapidly convergent power series ; 
gravitational acceleration ; 
depth of the fluid layer; 
dimensionless pressure ; 
Prandtl number; 
Rayleigh number; 
dimensionless time ; 
dimensionless frozen time; 
initial temperature ; 
T, - AT; 
dimensionless velocity vector; 
dimensionless velocity components ; 
w*(z) for 0 d [ & 1; 
M’*(Z) for 1 < ; < l/6 ; 
dimensionless rectangular coordinates. 

Greek symbols 

A 6a; 

AT, temperature difference ; 
4 dimensionless effective thermal depth ; 
Y 
i. z/6 ; 
8, dimensionless temperature difference; 

Ok”> dimensionless temperature gradient at the 
upper surface ; 

k’, thermal diffusivity ; 
PT viscosity ; 
V, kinematic viscosity ; 
P3 density ; 

POT density at the initial temperature; 

0, growth rate of the disturbance. 

t Department of Chemical Engineering. 

Superscripts 

dimensional quantity, derivative with re- 
spect to i; 

* amplitude of the disturbance at a frozen 
time. 

Subscripts 

b, basic state; 

c, critical condition ; 
1, perturbation quantity. 

I. IiYTRODUCTION 

WHEN a fluid layer which is originally isothermal and 
quiescent is suddenly cooled from above (or heated 
from below) with the corresponding Rayleigh number 
exceeding the critical value, the top-heavy fluid layer 
becomes unstable and motion begins. The determi- 

nation of the time at which this convective motion 
starts constitutes an important stability problem, 
where the time-dependent nonlinear base tempera- 
ture profile is concerned. 

Lick [l] and Currie [2] analysed this problem by 
adopting a quasi-steady model in which the nonlinear 

base temperature profile was considered to be frozen at 
each instant in time and was approximated by two 
linear segments. Foster [3], Mahler et al. [4] and 
Gresho and Sani [S] questioned this frozen time 

analysis and applied initial value techniques under the 
assumption that thecritical state is attained at the time 
when the fastest growing initial disturbance has been 
amplified by several orders of magnitude. 

In their investigations on the onset of cellular 
convection in a flowing liquid layer, Choi [6] and 
Davis and Choi [7] applied both the local stability 
theory and the amplification theory. In the la’ter the 
spatial growth of the disturbances is considered and in 
the former the spatially developing base temperature 

profile is treated locally as being frozen at each axial 
position. The best agreement with experiment has been 
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obtained by means of the modified local stability 
analysis with an additional assumption that for large 

Prandtl number the cellular convection is confined to 
the thermal boundary layer at the onset of instability. 

Since the above problem is similar to the present one 
except that the base temperature is spatially develop- 

ing instead of time dependent, their modified concept 
can be extended to our problem without loss of 

generality. In fact, it is the purpose of the present study 
to re-examine the assumptions of the quasi-steady base 
temperature profile and the confinement of the tem- 
perature disturbance to the effective thermal depth. 

2. STABILITY ANALYSIS 

Consider a fluid layer which is originally isothermal 
and quiescent. It is considered that the fluid is infinite 
in horizontal directions but bounded at top and 

bottom by parallel rigid conducting plates. At some 
time t’ = 0, the upper surface is suddenly cooled to a 
temperature AT below the original value and from 
then on maintained there, while the lower surface is 
always held at fixed temperature. If the corresponding 
Rayleigh number exceeds the critical value, then at a 
later time the fluid will eventually become unstable and 

motion will begin. This onset time can be found by 
solving a stability problem, where a time-dependent 
nonlinear base temperature profile is assumed as 
shown schematically in Fig. 1. The coordinate z’ will be 
measured vertically downwards from the top surface 
and the coordinates s’ and y’ lie in the horizontal 

planes. 
The starting point for the present problem is the 

derivation of the governing equations for a mechani- 
cally incompressible Newtonian fluid with negligible 
dissipation energy on the basis of Boussinesq approxi- 
mation [8]. After introducing the following dimen- 
sionless variables : 

I? 
(u ; u. I’. IV) = ; (u’ ; u’, 1.1, w’), 

p = (P’ - l’“Y”‘)~~2, () = T’ - T, ) I = ‘ic 
jl” AT h 2’ 

the governing equations can be made dimensionless as 

follows : 

v ‘U = 0, (1) 

;[;+u%)= -VP+V’u-Ruf1k+Rak, 

(2) 

i;u 
;-; + u vo = V%. (3) 

When the sudden change in temperature is applied it 

is expected that at first there will be. no motion due to 

natural convection and heat will be transferred by 
conduction only. Therefore, in the basic state ub = 0 
and &(z. t) satisfies the following transient heat 
conduction equation : 

?O, (7% _=h 
i;r &2 ’ (4) 

with the initial and the boundary conditions 

U,=l forO<-_<l,t=O, 

H, = 0 for z = 0, I > 0, (5) 

0, = 1 for 3 = 1, t >, 0. 

The solution to equation (4) subject to conditions (5) 
is easily obtained by the method of separation of 

variables (Graetz type) and is 

fjb = z + 2 i sinexp (_-n2n2t), (6) 
n[n=l 11 

However, at small times (say t < - 0.01) this solution 
converges very slowly and thus the following approxi- 
mation (Leveque type) based on the fluid having 
infinite depth is known to be more useful [5]: 

tib = erf [z/(4t)’ :‘I. (7) 

The perturbation quantities are superimposed on 
the basic quantities in the form 

(n, PI 0) = (u,, Pb + PI, Ob + 0,). (8) 

Substituting equation (8) into equations (I), (2) and (3) 
and applying the linear stability theory we obtain the 
perturbation equations. To eliminate the pressure 
term from the momentum equation, it is convenient to 
take a double curl of that equation with the use of 
continuity equation. The z-component of the resulting 
momentum equation and the energy equation for the 
perturbation quantities are given as follows [S] : 

(;; - V21V2w, = - R&$0,, (9) 

FIG. 1. Schematic diagram of the system under consideration. 
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with the boundary conditions 

?W, 
W, = ~- = 8, = 0 

?Z 
at z = 0,l (11) 

where 

v+$+(71 
(7y2 

is the 2-dim. operator. 
Noting that there are no lateral boundaries, we can 

express an arbitrary disturbance in the x-y plane in 

terms of 2-dim. periodic waves 

(w,, 0,) = [W,(z, t), B,(z. t)] exp[i(a,x + a,y)l (12) 

where LI = (af + a,) 2 ’ ‘2 is the horizontal wavenumber 

of the disturbance. 

3. MODIFIED FROZEN TIME ANALYSIS 

Since ?H,/?z is a function of r as well as z, the 

variables z and t in equations (9) and (10) may not be 
separable. The early researchers [l, 21 of the present 
problem resorted to the so-called frozen time analysis, 

in which the non-linear base temperature profile 0, is 
frozen at each instant in time so that ;lQ,/az becomes a 
function of z only and t is considered as a parameter. It 
is then possible to separate the variables z and t in the 
differential equations (9) and (10) so that the distur- 
bances can be expressed as 

(w,, 0,) = [w:(z), 0:(z)] exp(at) 

x exp [i(a,x + a,y)]. (13) 

It was assumed by Currie [2] that the principle of 
exchange of stability is valid at the onset of instability. 
Thus based on the marginal state method of the frozen 
time analysis the equations were written in the form 

(14) 

(15) 

with the boundary conditions 

w:=z=0:=0 at z=O,l. (16) 

Foster 131, Mahler et a/. [4] and Elder [9] took 

entirely different approaches dependent on initial 
value techniques. Particularly, Gresho and Sani [5] 
compared the initial value techniques and the frozen 
time analyses by using Galerkin’s method to obtain 
approximate solutions. They argued that the marginal 
state assumption based on the frozen time concept is 
not valid since the decay rate of the base temperature 
transient is large at the onset of instability. Assuming 
some initial disturbance typically ‘white noise’, they 

considered that the critical state is attained when it has 

been amplified by several orders of magnitude. But 
there seems to be some room for improvement in their 

argument since their results turned out to be sub- 
stantially affected by the choice of the initial distur- 
bances which are not uniquely defined. However, when 
we consider their results from another point ofview, it 
is quite noteworthy that their results for Pr = 7 

indicated that the temperature disturbances near the 
onset time (r = 0.02 for Ra = 105) are independent of 

the lower boundary and distributed in the effective 
thermal depth whereas the velocity disturbances are 
controlled by the boundary conditions at both 

surfaces. 
Studies which are related to the present problem and 

of much importance are those of Choi [6] and Davis 
and Choi [7], who took notice of this fact in their 
theoretical and experimental investigations on the 

onset of cellular convection in a flowing liquid layer. 
They applied both local stability analysis and amplifi- 
cation theory, as explained in the latter part of Section 
1. The best agreement with experiment was obtained 

by means of the modified local stability analysis which 
assumes that for large Prandtl number, say Pr > 6, the 
temperature disturbances are confined to the thermal 
boundary layer at the onset of instability. 

In the present study, we shall restrict ourselves to the 

limiting case of large Prandtl number (Pr + x) based 
on the results of Choi [6] and Davis and Choi [7]. 
Then under this condition, it can be assumed that at 
the onset of thermal instability the temperature distur- 
bances are confined to the effective thermal depth 
before the effect of the base temperature penetrates the 
whole fluid layer. We readily recall that this is also 
consistent with what Gresho and Sani [S] observed for 

Pr = 7 as previously discussed. Consequently, it can be 
understood that the classical frozen time concept 
becomes meaningful again in this case. 

On the other hand, for the opposite case of Pr -+ 0, 

the conduction effect accompanied by convection may 
exist outside the effective thermal depth at the moment 
when the motion sets in. In this case the propagation of 

temperature disturbances 0: may affect the full depth. 
In fact, it is well known that for mercury (Pr 2 0.025) 
no stationary regular motion in the form of hexagonal 
cells or rolls can be observed at the onset of thermal 
instability. The applicability of the frozen time model is 
then severely restricted and should be re-examined for 

this case as Gresho and Sani suspected. 
Thus, based on the modified frozen time concept for 

large Pr, it naturally follows that the principle of 
exchange of stability is valid at the onset of instability, 
i.e., that equations (14)-(16) still hold. And the modi- 
fied frozen time concept for large Pr also leads us to 
make the following very useful assumption : 

0: = 0 for z 2 6, (17) 

where 6 is the effective thermal depth. In the present 
study 6 is taken as the depth from the top surface to 
where eb = 0.99. Paying attention to the equation (17) 
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and eliminating 0: from the system of equations (14) 
and (15) for z ,< 6, we can reformulate the perturbation 
equations as follows : 

= 0 
w: = 

(18) 

for z B 6 (19) 

with the boundary conditions 

WY = 0 at z = 0, (20) 

dw: 
w: ZZ ---- = 0 

dz 

and the interface conditions that 

at z= 1, (21) 

d4w* 
and 2 are continuous at z = S. 

dz4 
(22) 

Here, the conditions (22) are established on the 
continuity of the solution including velocity, stress and 
temperature at the edge of the effective thermal depth. 

In the next section, we shall show a very convenient 
way of approximating &, through which the solutions 
can be represented as sums of fast converging series 
and the critical values can be readily calculated. 

4. METHOD OF SOLUTION 

The fact that M,j?z is a function of z still com- 

plicates the solution to the system of equations 
(18))(22). In order to overcome this difficulty, Lick [l] 

and Currie [2] employed a useful approximation with 
which they represented the basic temperature profile 
by two straight line segments. In the present study 
however we consider that an even better approxi- 
mation which is simple to use and yet preserves all the 
necessary features of the exact solutions can be 

obtained in the power form as follows: _ Y 

f&=1- 1-i 
i 1 for 0 ,< z < 6, (23) 

H, = 1 for (5 < 7 < 1, 1-1 (24) 

where N is an appropriate exponent. After differentiat- 

ing the equation (23) with respect to z and considering 
the boundary conditions, this exponent can be de- 
termined as 

N = &, 6, (25) 

where 0;” is the temperature gradient at the upper 
surface. The numerical values of 6 and &,, for a frozen 
time tr are calculated from the exact solution of the 
basic temperature profile, i.e. equation (6) or (7) 
depending on the range of t, 

d = 3.64 t: 2, t&, = L 
(nr,)’ f 

for t, < 0.01, (26) 

b = =lo,,=,w L = 1 + 2 C exp (-n2~2r,) 
n=, 

for t, > 0.01. (27) 

In Fig. 2 a comparison is made between the exact 
solution and the present modified solution. We note 
that there is only negligible difference between them 
and that the present modification is more practical 
than the two segment approximation of Currie [Z]. It 
is now convenient to rewrite equations (18))(22) by 
introducing a new dimensionless variable < = z/S. In 

doing so, we use the Taylor series expansion of the 
term tV,/iz with respect to < and make the following 
definitions : 

wi(i) = w:(z) for 0 < < < 1, 
(28) 

wa(i) = w:(z) for 1 6 < Q l/b. 

The perturbation equations now become 

(D2 - u2~2)3 \ci + Ru u2#‘Hb, 

X [fi F-l)lP]wi=O 

for 0 < < < 1, (29) 

(0’ - ~~6~)~ w. = 0 for 1 Q i ,< l/6 (30) 

with the boundary and interface conditions 

wi = DWi = (02 - &2)2Wi = 0 at [ = 0, (31) 

u’a = Dw, = 0 at 5 = l/6, (32) 

w; - w. = PM?; - D”w, = 0 (n = 1,2,3,4) 

at c= 1, (33) 

where D denotes d/d<. 
A general solution of the above problem can be 

constructed in the form 

w. = (C, + C,()em”“c + (C, + C,< )echc 

where C, (n = 0, 1,2, , 9) are arbitrary constants and 

.f,(<) are rapidly convergent power series [lo], 

.fn(<) = c b(kn’ ik (n = 0, 1, 2, ., 5). (35) 
k=0 

The series coefficients for k < 5 are specified as 

b’“‘, = 0 
(36) 

@’ = 6 kn for !i = 0, 1,2, . . . . 5, 

and those for k > 6 are determined in terms of the 
preceding coefficients obeying the recurrence formulas 
generated from equation (18) 

br’ = 
(Su)2 

3bjJL, + - w 
k(k - 1) (k - 2)(k - 3) 
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X -3bp!, + 
kw 

(k - 4)(k - 5) bLi II 
(k - 6)! k-l 

- ~ Ra a266W,, 
k! 

1 (-l)k-6-m 
m=-I 

(37) 

The constants C,(n = 0, 1, 2, . . ., 9) are chosen to 
satisfy the boundary and the interface conditions. 

From the boundary conditions at [ = 0, we obtain 

c, = c, = 0, c, = 02C,. 
6 

(38) 

From the conditions at < = l/S and [ = 1, we obtain 7 
algebraic equations in terms of 7 constants, C,, C,, C,, 
C,, C,, C’s and C,. Thus in order that there exist 
nontrivial solutions for these constants the following 
secular equation must be satisfied: 

approximately 1670 near t, = 0.1 may be compared 
with the result of Currie [2] who obtained min(Ra,) = 
1340 at 6 = 0.72 (equivalent to t, = 0.04). However, 
this is of only limited interest in the present study since 

we are more interested in the range of Rayleigh 
numbers much greater than 1708 (Fig. 4). 

Once the onset conditions are determined, the 

distributions of the velocity and temperature distur- 
bances can be calculated only up to multiplicative 
constants and we can proceed to compare our theory 
with those of others. 

5. RESULTS AND DISCUSSION 

The effect of Rayleigh number on onset time can be 

studied by the method discussed in the previous 
section. The result of the present analysis is shown in 
Fig. 4 together with the results of Gresho and Sani [5] 
and Currie [2]. 

For a given Rayleigh number the onset time pre- 
dicted by the present study is shown to be smaller than 

0 0 0 e-” 
1 
se-a ea 

0 0 0 --Bema (1 -u)e-’ Sea 

- r Ml) + $(l) 
I 

-L(l) -L(l) e-/’ e-O eD 
L 

- fi(l F 
- fX1 I 
- fY'(l I 

r 

+ ~/h(l) 1 -f;(l) -f;(l) -fiemP (1-/3)e-P fleP 

+ 5 f;(l) 
I 

-f’;(l) -f;(l) b2em0 /?(/?-2)e-” bZeO 

+ ; f;‘(l) 
1 

-f;“(l) -f;“(l) -fi3ee@ fi2(3-fi)e-D /13eP 

- 
I 

,1“‘(l) + E f”(1) 2 
6’4 I 

-f;(l) -f:(l) p”e-” 

Here a = 6~. 
A neutral stability curve can be generated by solving 

the above problem for any frozen time tr (hence for 
given values of 6 and o’,,). Figure 3 shows a composite 
of such neutral stability curves for various frozen times. 
The minimum Rayleigh number on each curve is 
considered to be the critical Rayleigh number above 
which thermal instability occurs at the corresponding 
frozen time. Or equivalently, it can be said that the time 
required for the onset of thermal instability under 
given Rayleigh number may be predicted by finding 
the stability curve on which the Rayleigh number is the 
minimum. 

For the onset time t, = 1.0, the critical Rayleigh 
number Ra, = 1707.7 and the critical wavenumber 

a, = 3.117. This is an indication that as t, + x, the 
classical RayleighhBenard problem which corres- 
ponds to the case of a uniform temperature gradient is 
recovered. The fact that Ra, has a minimum of 

/13(fl-4)emp p4ep 

1 
~ ey 
6 

(1 + a)e’ 

ea 

(1 +B)eP 

B(B + 2)eP 

B*(3 + B)e” 

B3(B+4)e” 

= 0. (39) 

that by the amplification theory ofGresho and Sam for 
Pr = 7 but larger than those by the frozen time 
analysis of theirs and the two segment approximation 
of Currie. In other words the asymptotic relations for 
Ra, and t, are: Ra,tt s = 280 in the amplification 
theory, Ra,ti .5 = 14.2 in the present study and Ru,ti .’ 
= 2 in the frozen time analysis. Currie’s representation 
of the base temperature profile by two straight line 
segments may be adequate for very small and for very 
large onset times. But no matter how well the two 
segments are chosen for intermediate onset times, 
there is always much discrepancy from the actual 
profiles, especially near the upper surface as can be 
conjectured from Fig. 2. Gresho and Sani used a time 
dependent Galerkin method in which the temperature 
and velocity disturbances are each represented by a 
series of specified trial functions with time dependent 
coefficients. Although the exact form of the base 
temperature profile is used throughout their analysis, 
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- Exact solution 

Leveque type for tc0.01 
Graetz type for ta0.01 

------- Present modification 

0 0.1 0.2 0.3 0.L o-5 0.6 0.7 O-8 0.9 1.0 
2 

FIG. 2. Comparison of exact and modified base temperature profiles. 

their results may still depend on the forms and the 
number of terms of the trial functions used. Above all, 

it should be noted that in the amplification theory they 
considered the critical state to be attained at the time 
the fastest growing disturbance has grown sufficiently 
to be observed, say 10’ times the initial value. This 
definition lacks uniqueness since it involves the 
measurability of discernible motion, However, when 
we consider that in the present modified frozen time 
analysis, the onset time is defined as the time the fastest 

growing disturbance is neutrally stable, the result of 
their amplification theory is not altogether irrelevant 

to ours. That is, the discrepancy between the two 
analyses can be attributed to the time for the initial 
disturbance defined in the amplification theory to 
grow to a certain observable size. 

In the numerical study on the temporal development 
of a model of high Rayleigh number convection, Elder 

[ll] assumed that when Pr 2 1 convective flows 
behave as if Pr = x and found that the critical time 
(onset time) is 2.65 x lo- 3 at Ra = lo5 for a fluid layer 
suddenly heated from below. When this value is 
compared with ours in Fig. 4, it can be easily known 
that the agreement is very good. This is another and 
more direct manifestation of the validity of our 
assumption. 

Let us examine one additional set of information on 
the wavenumber. In Fig. 5 the effect of Rayleigh 
number on wavenumber is shown. The conventional 

frozen time analysis predicts a flattening of the wave- 
number us Rayleigh number curve for a considerable 
range of Rayleigh numbers. This is not considered to 
be the proper dependence of a, on Ra,, since it is 
generally known that the size of the disturbance 
becomes smaller as Ra, increases. However, the amph- 
fication theory and the modified frozen time analysis 

a 

F’I~;. 3. Neutral stabrlity curves for various times based on modified frozen time analysis. 
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Rat 

FIG. 4. Effect of Rayleigh number on onset time: ~ 
modified frozen time analysis, - - - - frozen time analysis of 
Gresho and Sani [5], ---- amplification theory of 
Gresho and Sani [S] for Pr = 7, --- two segment 

approximation of Currie [2]. 

103 IOL 105 106 107 108 109 tdo IO” 1012 

Rat 

FIG. 5. Effect of Rayleigh number on wavenumber: ~ 
modified frozen time analysis, - - - - frozen time analysis of 
Gresho and Sani [5], ~ - ~ amplification theory of Gresho 

and Sani [5]. 

are in fair agreement with each other and predict the 

proper dependence of a, on Ra,, that is, the increase of 
(I, with Ra,. The common asymptotic solution in these 
two analyses is Ra, = 250~:. The fact that the same a, 
is obtained for a given Ra, in spite of the different 
definitions of the onset time in the two analyses is a 

very remarkable and encouraging result which 

strongly supports the previous reasoning on the dif- 

ference in the onset times. 
Summarizing the discussions thus far, the assump- 

tion that for large Prandtl number the temperature 
disturbances are confined to the effective thermal 
depth is proven to be valid in the case where a sudden 
change in temperature is applied to a boundary of a 
fluid layer. 

Once the critical values are determined for a given 
onset time, the distribution of disturbances can be 
calculated only up to multiplicative constants. For 

example, the solutions, 07 and wr for t, = 0.001, 0.01 

and 0.1 are obtained by simply taking C, = 1 and 
displayed in Figs. 6 and 7, respectively, where they are 

normalized with respect to the maximum values 
represented as scale factors. It is recalled that in Fig. 2 
of Gresho and Sani [5], the temperature disturbance 
beyond the effective thermal depth is negligible. Then it 
is of particular interest to note that 0: of the present 
solution for t, = 0.01 has the same general nature as 

that of Gresho and Sani throughout the most part of 
the effective thermal depth except near the outer edge. 

6. CONCLUSIONS 

The onset of thermal instability in a fluid layer 
undergoing a step change in temperature has been 
investigated by applying the marginal state method of 
the modified frozen time analysis. The analysis has 
been carried out under the assumption that for large 
Prandtl number, say for Pr > 6, the temperature 
disturbances are confined to the effective thermal 
depth at the onset of thermal instability. 

This assumption has led in the first place to a 
considerable simplification in the formulation of the 
stability problem, where the solutions can be found in 
the form of rapidly convergent power series. The 
neutral stability curve for any frozen time has been 

1.0 r 

0.6 - 

I I I 

scale factor 

FIG. 6. Distribution of temperature disturbance at various times 
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FIG. 7. Distribution of z-component velocity disturbance at various times. 

then obtained by solving a secular equation generated 
from the boundary conditions. 

The present theory predicts the onset time for a 

given Rayleigh number to be smaller than that pre- 
dicted by the conventional amplification theory. A 
lucid interpretation of this discrepancy has been given 
by comparing the definitions of the onset times. The 

present theory also predicts that the wavenumber 
increases with the Rayleigh number, which agrees 
remarkably well with the conventional amplification 
theory. This agreement has substantiated that the 
present theory is valid and complements the extant 

theories. 
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APPARITION DE L’INSTABILITE DANS UNE COUCHE FLUIDE HORIZONTALE SOUMISE 
A UN CHANGEMENT ECHELON DE TEMPERATURE 

Resume-L’apparition de I’instabihte dune couche fluide soumise a un brusque changement de temperature 
superficielle est analyde par une version modifiee de I’hypothese du temps gelt. L’hypothese, selon laquelle 
pour un grand nombre de Prandtl les perturbations de temperature sont continees a une profondeur 
thermique effective, conduit a une simplification considerable dans la formulation du probltme de stabilitt. 
Leffet du nombre de Rayleigh sur le temps d’apparition est discutt et clairement expliqd. La relation entre 
le nombre de Raytetgn et le nom&e d’onde calculec ;,; s’accorde remarquablement bien avec la theorie de 

I’amplification. 



The onset of instability in a horizontal fluid layer 

DAS EINSETZEN DER INSTABILITAT IN EINER WAAGERECHTEN FLUIDSCHICHT 
AUFGRUND EINES TEMPERATURSPRUNGES 

Zusammenfassung-Es wird das Einsetzen der Instabilitat in einer Fluidschicht, welche einer pldtzlichen 
Temperaturanderung ausgesetzt ist, mit einer moditizierten Version der Hypothese des eingefrorenen 
Zustandes untersucht. Die Annahme, da0 fur grol3e Prandtl-Zahlen die Temperaturstorungen auf die 
effektive thermische Eindringtiefe beschrankt sind, fiihrt zu einer erheblichen Vereinfachung in der 
Formulierung des Stabilitats-Problems. Der EinfluB der Rayleigh-Zahl auf die Ausliisezeit wird behandelt 
und einleuchtend erkhirt. Die Beziehung zwischen der Rayleigh-Zahl und der hier berechneten Wellen-Zahl 

stimmt mit der bestehenden Verstarkungstheorie bemerkenswert gut t&rein. 

B03HMKHOBEHHE HEYCTO@IMBOCTH B l-OPM30HTAJIbHOM CJIOE XKMJIKOCTM 
IIPM CTYIIEHYATOM M3MEHEHMM TEMIIEPATYPbI 

~~oTauna-~on~~~~eposaHHbrM MeTOLlOM, ItC~OJIb3ylo~HM rHIlOTe3y "3aMOpOWCHHOrO" BpeMeHH, 

npOaHanH3HpOBaHO 803HBKHOBeHHe HCyCTOiiSABOCTH B CJIOC mHnKOCTH npH MrHOBeHHOM I13MCHeHWII 

rebmeparypbi noaepxaocra. @opMynHpoBKy npo6neMbi ~CTO~~~AB~CTH M0x~0 cyurecTBeHH0 ynpo- 

CTliTb, It~AnOnOWiB, YTO npH 6onbmnx 3HaWHlilX 'lHCJla npaHnTJlFl TeMnepaTypHble BO3My",eHHI 

OrpaHWEHbI 06JIaCTbIO Y$@eKTABHOi? TennOBOii rJly6kiHbl. PaCCMOTpeHO )i 060CHOBaHO BJlHIlHWe 

SiCJla P3JWl Ha BpeMK BOSHRKHOBCHHR HeyCTOii'iHBOCTH. nOJlyWHHOe B pa6ore COOTHOUleHHe MeWIy 

'IACJIOM P3JW4 M BOJIHOBblM 'tHC."OM ilOCTaTO'4HO XOpOluO COr,IaCyeTCZ4 C Cy",eCTByFO",efi J,HHeikOfi 

reopeefi. 
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