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Abstract—The onset of instability in a fluid layer which is subjected to a sudden change in surface
temperature is analysed by a modified version of the frozen time hypothesis. The assumption that for large
Prandtl number the temperature disturbances are confined to the effective thermal depth leads to a
considerable simplification in the formulation of the stability problem. The effect of the Rayleigh number on
the onset time is discussed and clearly explained. The relation between the Rayleigh number and the
wavenumber predicted here agrees remarkably well with the extant amplification theory.

NOMENCLATURE
a, horizontal dimensionless wavenumber ;
a,, a,, components of a;
i, coefficients of the power series;
C. constants used in the general solution of the
perturbation equations;
D, d/d¢;
S rapidly convergent power series;
g, gravitational acceleration;
h, depth of the fluid layer;
D, dimensionless pressure ;
Pr, Prandtl number;
Ra, Rayleigh number;
t dimensionless time ;
te, dimensionless frozen time;
To, initial temperature ;
T, T, — AT;
u, dimensionless velocity vector;
u, v, w, dimensionless velocity components;
will), wHz)for0<{< 1
wo(l), w*(z)for 1 < { < 1/5;
X, ¥, z. dimensionless rectangular coordinates.

Greek symbols

B, oa;

AT, temperature difference ;

0, dimensionless effective thermal depth ;

g, z/8;

0, dimensionless temperature difference ;

0us dimensionless temperature gradient at the
upper surface;

K, thermal diffusivity ;

1, viscosity ;

v, kinematic viscosity ;

o, density ;

Pos density at the initial temperature;

g, growth rate of the disturbance.

+ Department of Chemical Engineering.

Superscripts
" dimensional quantity, derivative with re-
spect to (;
*, amplitude of the disturbance at a frozen
time.
Subscripts
b, basic state;
c, critical condition;
1, perturbation quantity.

1. INTRODUCTION

WHEN a fluid layer which is originally isothermal and
quiescent is suddenly cooled from above (or heated
from below) with the corresponding Rayleigh number
exceeding the critical value, the top-heavy fluid layer
becomes unstable and motion begins. The determi-
nation of the time at which this convective motion
starts constitutes an important stability problem,
where the time-dependent nonlinear base tempera-
ture profile is concerned.

Lick [1] and Currie [2] analysed this problem by
adopting a quasi-steady model in which the nonlinear
base temperature profile was considered to be frozen at
each instant in time and was approximated by two
linear segments. Foster [3], Mahler et al. [4] and
Gresho and Sani [S] questioned this frozen time
analysis and applied initial value techniques under the
assumption that the critical state is attained at the time
when the fastest growing initial disturbance has been
amplified by several orders of magnitude.

In their investigations on the onset of cellular
convection in a flowing liquid layer, Choi [6] and
Davis and Choi [7] applied both the local stability
theory and the amplification theory. In the latter the
spatial growth of the disturbances is considered and in
the former the spatially developing base temperature
profile is treated locally as being frozen at each axial
position. The best agreement with experiment has been

1829

HMT 25:12 -



1830

obtained by means of the modified local stability
analysis with an additional assumption that for large
Prandtl number the cellular convection is confined to
the thermal boundary layer at the onset of instability.
Since the above problem is similar to the present one
except that the base temperature is spatially develop-
ing instead of time dependent, their modified concept
can be extended to our problem without loss of
generality. In fact, it is the purpose of the present study
to re-examine the assumptions of the quasi-steady base
temperature profile and the confinement of the tem-
perature disturbance to the effective thermal depth.

2. STABILITY ANALYSIS

Consider a fluid layer which is originally isothermal
and quiescent. It is considered that the fluid is infinite
in horizontal directions but bounded at top and
bottom by parallel rigid conducting plates. At some
time ' = 0, the upper surface is suddenly cooled to a
temperature AT below the original value and from
then on maintained there, while the lower surface is
always held at fixed temperature. If the corresponding
Rayleigh number exceeds the critical value, then at a
later time the fluid will eventually become unstable and
motion will begin. This onset time can be found by
solving a stability problem, where a time-dependent
nonlinear base temperature profile is assumed as
shown schematically in Fig. 1. The coordinate =’ will be
measured vertically downwards from the top surface
and the coordinates x' and )’ lie in the horizontal
planes.

The starting point for the present problem is the
derivation of the governing equations for a mechani-
cally incompressible Newtonian fluid with negligible
dissipation energy on the basis of Boussinesq approxi-
mation [8]. After introducing the following dimen-
sionless variables:

1
(x.y.z)= (X, ¥, 2),
h

’

h
(U v, w) = ;(u’; w, v, w),

'K
> = h7’

(P — poyz)h*

90— T-T,
UK ’ AT

the governing equations can be made dimensionless as
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1 o]
— (™ 4 -Vu)= — VP + V2u — Rubk + Rak,
Pr\ot

(2)

A

ao
't; +u-V0 =V (3)
3

When the sudden change in temperature is applied it
is expected that at first there will be no motion due to
natural convection and heat will be transferred by
conduction only. Therefore, in the basic state w, = 0
and 6,(z. 1) satisfies the following transient heat
conduction equation:

A a2
with the initial and the boundary conditions
0,=1 for0<z<1,1=0,
0,=0 for z=0,1>0, (5)
0,=1 forz=1,t=20.

The solution to equation (4) subject to conditions (5)
is easily obtained by the method of separation of
variables (Graetz type) and is

2 2 sinnnz

Hb:Z+EZ

n=1

exp (—n’n’t). (6)

However, at small times (say t < ~0.01) this solution
converges very slowly and thus the following approxi-
mation (Leveque type) based on the fluid having
infinite depth is known to be more useful [5]:

0, = exf [z/(41)!2]. (7)

The perturbation quantities are superimposed on
the basic quantities in the form

(u, p, 0) = (u,, pp + py, 0y + 6,). (8)

Substituting equation (8) into equations (1), (2) and (3)
and applying the linear stability theory we obtain the
perturbation equations. To eliminate the pressure
term from the momentum equation, it is convenient to
take a double curl of that equation with the use of
continuity equation. The z-component of the resulting
momentum equation and the energy equation for the
perturbation quantities are given as follows [5]:

follows: 1 ¢
— — V2 |V2w, = — RaVi4,, 9)
V-u=0, (1) Pr ot
T
- |
h ‘ 7
t=0 1
To ﬁ

FiG. 1. Schematic diagram of the system under consideration.



The onset of instability in a horizontal fluid layer

¢ 0,
—— V0, = —w,—, (10)
((ﬁt ! 'z
tele dlen e danss: mmsnAitinmo
WILI UIC boullddly COMIUIUUILD
éw
w=——=0,=0 atz=0,1 (11)
cz
where
('12 (32
. )
Vi= ﬁxz + ('1y2

is the 2-dim. operator.
Noting that there are no lateral boundaries, we can
express an arbitrary disturbance in the x-y plane in

dall al Ly als

terms of 2-dim. periodic waves

(wy. 8,) = [w,(z. 1), B,(z, ] explila,x + a,3)] {12)
where a = (a2 + a?)'? is the horizontal wavenumber

of the disturbance.

3. MODIFIED FROZEN TIME ANALYSIS

Since @0,/3z is a function of t as well as z, the
variables z and ¢ in equations (9) and (10) may not be
separable. The early researchers [1, 2] of the present
problem resorted to the so-called frozen time analysis,
in which the non-linear base temperature profile 9, is
frozen at each instant in time so that 86,/6z becomes a
function of z only and ¢ is considered as a parameter. [t
is then possible to separate the variables z and t in the
differential equations (9) and (10) so that the distur-
bances can be expressed as
(w1, 0,) = [wh(z), 0%()] explor)

(13)
It was assumed by Currie [2] that the principle of
exchange of stability is valid at the onset of instability.
Thus based on the marginal state method of the frozen
time analysis the equations were written in the form

dl
(6~

x exp [i(a,x + a,y)].

2
a2> w¥ + Raa®0F =0 (14)

d? o0
<d—z7—a2>or—a7"wr=0 (15)
with the boundary conditions
d *k
wE="0 _gx=0 atz=01.  (16)
dz

Foster [3], Mahler er al. [4] and Elder [9] took
entirely different approaches dependent on initial
value techniques. Particularly, Gresho and Sani [5]
compared the initial value techniques and the frozen
time analyses by using Galerkin’s method to obtain
approximate solutions. They argued that the marginal
state assumption based on the frozen time concept is
not valid since the decay rate of the base temperature
transient is large at the onset of instability. Assuming
some initial disturbance typically ‘white noise’, they
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considered that the critical state is attained when it has
been amplified by several orders of magnitude. But
there seems to be some room for improvement in their
argument since their resuiis turned out to be sub-
stantially affected by the choice of the initial distur-
bances which are not uniquely defined. However, when
we consider their results from another point of view, it
is quite noteworthy that their results for Pr = 7
indicated that the temperature disturbances near the
onset time (r = 0.02 for Ra = 10°) are independent of
the lower boundary and distributed in the effective
thermal depth whereas the velocity disturbances are
controlled by the boundary conditions at both
surfaces.

Studies which are related to the present problem and
of much importance are those of Choi [6] and Davis
and Choi [7],

angd

theoretical and experimental investigations on the
onset of cellular convection in a flowing liquid layer.
They applied both local stability analysis and amplifi-
cation theory, as explained in the latter part of Section
1. The best agreement with experiment was obtained
by means of the modified local stability analysis which
assumes that for large Prandtl number, say Pr > 6, the
temperature disturbances are confined to the thermal
boundary layer at the onset of instability.

In the present study, we shall restrict ourselves to the
limiting case of large Prandtl number (Pr — 7. ) based
on the results of Choi [6] and Davis and Choi [7].
Then under this condition, it can be assumed that at
the onset of thermal instability the temperature distur-
bances are confined to the effective thermal depth
before the effect of the base temperature penetrates the
whole fluid layer. We readily recall that this is also
consistent with what Gresho and Sani [ 5] observed for
Pr = 7 as previously discussed. Consequently, it can be
understood that the classical frozen time concept
becomes meaningful again in this case.

On the other hand, for the opposite case of Pr — 0,
the conduction effect accompanied by convection may
exist outside the effective thermal depth at the moment
when the motion sets in. In this case the propagation of
temperature disturbances 6% may affect the full depth.
In fact, it is well known that for mercury (Pr ~ 0.025)
no stationary regular motion in the form of hexagonal
cells or rolls can be observed at the onset of thermal
instability. The applicability of the frozen time model is
then severely restricted and should be re-examined for
this case as Gresho and Sani suspected.

Thus, based on the modified frozen time concept for
large Pr, it naturally follows that the principle of
exchange of stability is valid at the onset of instability,
ie., that equations (14)-(16) still hold. And the modi-
fied frozen time concept for large Pr also leads us to
make the following very useful assumption:

uﬂ\n took notice nf this fact in their

0 100K NOLUCC WIS Ialt i |8 3123

¥*=0 for z =6, (17)

where 0 is the effective thermal depth. In the present
study 6 is taken as the depth from the top surface to
where 0, = 0.99. Paying attention to the equation (17)
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and eliminating 0% from the system of equations (14)
and (15)for z < &, we can reformulate the perturbation
equations as follows:

d? 3 0
(d# - a2> w4 azRa(%h wt=0 for z <34,
/ (18)
dZ 2
((?—a2> wf =0 forz =26 (19)
with the boundary conditions
dw¥ d? Y
wi=——= gz wi=0 atz=0, (20
dw¥
wf=—1—=0 at z=1, (21)
and the interface conditions that
" (_iw_”{‘ d2wr  diwt
Ydz 7 odz2 7 d2?
d4 1k
and d are continuous at z = 4. (22)

dz*
Here, the conditions (22) are established on the
continuity of the solution including velocity, stress and
temperature at the edge of the effective thermal depth.
In the next section, we shall show a very convenient
way of approximating @, through which the solutions
can be represented as sums of fast converging series
and the critical values can be readily calculated.

4. METHOD OF SOLUTION

The fact that ¢0,/¢z is a function of z still com-
plicates the solution to the system of equations
(18)—(22). In order to overcome this difficulty, Lick [1]
and Currie 2] employed a useful approximation with
which they represented the basic temperature profile
by two straight line segments. In the present study
however we consider that an even better approxi-
mation which is simple to use and yet preserves all the
necessary features of the exact solutions can be
obtained in the power form as follows:

oy
Ob:1_<1_5> for 0<z<9o, (23)

0, =1 for 0 <z<1, (24)

where N is an appropriate exponent. After differentiat-
ing the equation (23) with respect to z and considering
the boundary conditions, this exponent can be de-
termined as

N =0,,0, (25)
where 6, is the temperature gradient at the upper
surface. The numerical values of é and 8y, for a frozen
time t; are calculated from the exact solution of the

basic temperature profile, i.e. equation (6) or (7)
depending on the range of t;

5= 36472 0, = for t; < 0.01, (26
¢ f bu (7'[[;)1 2 f ( )
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0 =zly _g99 Ohu=1+2 Y exp (—n’n’t)
n=1

for t; = 001. (27)

In Fig. 2 a comparison is made between the exact
solution and the present modified solution. We note
that there is only negligible difference between them
and that the present modification is more practical
than the two segment approximation of Currie [2]. Tt
is now convenient to rewrite equations (18)-(22) by
introducing a new dimensionless variable { = z/5. In
doing so, we use the Taylor series expansion of the
term ¢0,/¢z with respect to { and make the following
definitions:

wil) = wi(z) for 0<{<1,

(28)
woll) = w¥(z) for 1 < { < 1/4.
The perturbation equations now become
(D? — a*8*)® w; + Raa*s°0;, {1 + Y (-1
n=1
"t (8.0
x [ 1 < b 1)}(”}%:0
j=1 \ J
for0<{<1, (29)
(D? —a*6?)?w, =0 for 1 <{<1/6  (30)

with the boundary and interface conditions
w; = Dw; = (D? — a%6%)*w,; =0 at { =0, (31)
at £ =1/, (32)

va = DWO = 0
w; —wy =D"'w, — D'wy, =0(n=1,223,4)

where D denotes d/d(.
A general solution of the above problem can be
constructed in the form

5
i = Cn n e ’
w ng:O S(C) (34)

Wo = (Co + C0)e™ % + (Cg + Cyl )™

where C, (n = 0, 1, 2,...,9) are arbitrary constants and
L) are rapidly convergent power series [10],

LO=Y b n=0,1,2..,5 (35
k=0

The series coefficients for k < 5 are specified as
b, =0
b}:” = 5kn

(36)
for k=0,1,2,....5,

and those for k > 6 are determined in terms of the
preceding coefficients obeying the recurrence formulas
generated from equation (18)

(da)? (da)?
o S (n) _ R
b k(k — 1) {3”**2 TS
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(ba)?

x [—31);:14 Ay

(k —

)

k=17
Ra %, {b}:‘lﬁ+ T (—1pe

m=—1
k—6-m 50/
x [ ]—[ ( 'bu _
i=1 )

)}

The constants C,(n = 0, 1, 2, ..., 9) are chosen to
satisfy the boundary and the interface conditions.
From the boundary conditions at { = 0, we obtain

(9a)?

6)!

(37

Co=C, =0, Cy=

C,. (38)
From the conditionsat { = 1/6 and { = 1, we obtain 7
algebraic equations in terms of 7 constants, C,, C,, Cs,
Ce, C4, Cg and C,. Thus in order that there exist
nontrivial solutions for these constants the foliowing
secular equation must be satisfied :

Here f = da.

A neutral stability curve can be generated by solving
the above problem for any frozen time ¢; (hence for
given values of  and 6y,,). Figure 3 shows a composite
of such neutral stability curves for various frozen times.
The minimum Rayleigh number on each curve is
considered to be the critical Rayleigh number above
which thermal instability occurs at the corresponding
frozen time. Or equivalently, it can be said that the time
required for the onset of thermal instability under
given Rayleigh number may be predicted by finding
the stability curve on which the Rayleigh number is the
minimum.

For the onset time r, = 1.0, the critical Rayleigh
number Ra, = 1707.7 and the critical wavenumber

= 3.117. This is an indication that as t, — o0, the
classical Rayleigh-Bénard problem which corres-
ponds to the case of a uniform temperature gradient is
recovered. The fact that Ra, has a minimum of
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approximately 1670 near ¢, = 0.1 may be compared
with the result of Currie [ 2] who obtained min(Ra,) =
1340 at 6 = 0.72 (equivalent to t, = 0.04). However,
this is of only limited interest in the present study since
we are more interested in the range of Rayleigh
numbers much greater than 1708 (Fig. 4).

Once the onset conditions are determined, the
distributions of the velocity and temperature distur-
bances can be calculated only up to multiplicative
constants and we can proceed to compare our theory
with those of others.

5. RESULTS AND DISCUSSION

The effect of Rayleigh number on onset time can be
studied by the method discussed in the previous
section. The result of the present analysis is shown in
Fig. 4 together with the results of Gresho and Sani [5]
and Currie [2].

For a given Rayleigh number the onset time pre-
dicted by the present study is shown to be smaller than

0 0 0 —a 1 -a a 1 a
(4] =€ c Se
0 —pe ® (1—a)™* fe? (1 + a)
[fz + _f4 :' =) = f(1) e’ e ” e’ ef
[f )+ —f4 ] ~f5() —ge=? (1-Pe’f  pef (1+p)e’ = 0. (39)
ﬁz
[f' 4l ] 3y =f5) Bt pB-2)e!  pf B(B+2)’
[ 5'(1) + —f4 )} Y1) —f50) = B3-Pe? pef  FGE+PR!
- [f”(l) + — I3 1)j| —f5() Bt PAB-4)t et BB+4)’

that by the amplification theory of Gresho and Sani for
Pr = 7 but larger than those by the frozen time
analysis of theirs and the two segment approximation
of Currie. In other words the asymptotic relations for
Ra, and ¢, are: Rat!® = 280 in the amplification
theory, Ra.t!® = 14.2 in the present study and Ra,t!*
= 2in the frozen time analysis. Currie’s representation
of the base temperature profile by two straight line
segments may be adequate for very small and for very
large onset times. But no matter how well the two
segments are chosen for intermediate onset times,
there is always much discrepancy from the actual
profiles, especially near the upper surface as can be
conjectured from Fig. 2. Gresho and Sani used a time
dependent Galerkin method in which the temperature
and velocity disturbances are each represented by a
series of specified trial functions with time dependent
coefficients. Although the exact form of the base
temperature profile is used throughout their analysis,
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FiG. 2. Comparison of exact and modified base temperature profiles.

their results may still depend on the forms and the
number of terms of the trial functions used. Above all,
it should be noted that in the amplification theory they
considered the critical state to be attained at the time
the fastest growing disturbance has grown sufficiently
to be observed, say 103 times the initial value. This
definition lacks uniqueness since it involves the
measurability of discernible motion. However, when
we consider that in the present modified frozen time
analysis, the onset time is defined as the time the fastest
growing disturbance is neutrally stable, the result of
their amplification theory is not altogether irrelevant
to ours. That is, the discrepancy between the two
analyses can be attributed to the time for the initial
disturbance defined in the amplification theory to
grow to a certain observable size.

In the numerical study on the temporal development
of a model of high Rayleigh number convection, Elder

[11] assumed that when Pr > 1 convective flows
behave as if Pr = v and found that the critical time
(onset time)is 2.65 x 10~ *at Ra = 10° for a fluid layer
suddenly heated from below. When this value is
compared with ours in Fig. 4, it can be easily known
that the agreement is very good. This is another and
more direct manifestation of the validity of our
assumption.

Let us examine one additional set of information on
the wavenumber. In Fig. 5 the effect of Rayleigh
number on wavenumber is shown. The conventional
frozen time analysis predicts a flattening of the wave-
number vs Rayleigh number curve for a considerable
range of Rayleigh numbers. This is not considered to
be the proper dependence of a, on Ra,, since it is
generally known that the size of the disturbance
becomes smaller as Ra, increases. However, the ampli-
fication theory and the modified frozen time analysis

108
106
N l
N
& 10t 'R N
ag= 524 Y
, 448281
10
1 Rac vs. t¢
a 10
| 02
10
100 /10__3 t

10-4

FiG. 3. Neutral stability curves for various times based on modified frozen time analysis.
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approximation of Currie [2].
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FiG. 5. Effect of Rayleigh number on wavenumber: ——
modified frozen time analysis, ---- frozen time analysis of
Gresho and Sani [5], —-— amplification theory of Gresho
and Sani [5].

are in fair agreement with each other and predict the
proper dependence of a, on Ra,, that is, the increase of
a, with Ra,. The common asymptotic solution in these
two analyses is Ra, = 250a?. The fact that the same a,
is obtained for a given Ra, in spite of the different
definitions of the onset time in the two analyses is a
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very remarkable and encouraging result which
strongly supports the previous reasoning on the dif-
ference in the onset times.

Summarizing the discussions thus far, the assump-
tion that for large Prandtl number the temperature
disturbances are confined to the effective thermal
depth is proven to be valid in the case where a sudden
change in temperature is applied to a boundary of a
fluid layer.

Once the critical values are determined for a given
onset time, the distribution of disturbances can be
calculated only up to multiplicative constants. For
example, the solutions, 8% and w¥ for ¢, = 0.001, 0.01
and 0.1 are obtained by simply taking C, = 1 and
displayed in Figs. 6 and 7, respectively, where they are
normalized with respect to the maximum values
represented as scale factors. It is recalled that in Fig. 2
of Gresho and Sani [5], the temperature disturbance
beyond the effective thermal depth is negligible. Then it
is of particular interest to note that 6% of the present
solution for r, = 0.01 has the same general nature as
that of Gresho and Sani throughout the most part of
the effective thermal depth except near the outer edge.

6. CONCLUSIONS

The onset of thermal instability in a fluid layer
undergoing a step change in temperature has been
investigated by applying the marginal state method of
the modified frozen time analysis. The analysis has
been carried out under the assumption that for large
Prandtl number, say for Pr > 6, the temperature
disturbances are confined to the effective thermal
depth at the onset of thermal instability.

This assumption has led in the first place to a
considerable simplification in the formulation of the
stability problem, where the solutions can be found in
the form of rapidly convergent power series. The
neutral stability curve for any frozen time has been

06

04

0.2 t40-001{10018- 4}

t=0.01{182.4)

scale factor

-55)

02 04

0-6 0.8 1.0

F1G. 6. Distribution of temperature disturbance at various times.
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FiG. 7. Distribution of z-component velocity disturbance at various times.

then obtained by solving a secular equation generated
from the boundary conditions.

The present theory predicts the onset time for a
given Rayleigh number to be smaller than that pre-
dicted by the conventional amplification theory. A
lucid interpretation of this discrepancy has been given
by comparing the definitions of the onset times. The
present theory also predicts that the wavenumber
increases with the Rayleigh number, which agrees
remarkably well with the conventional amplification
theory. This agreement has substantiated that the
present theory is valid and complements the extant
theories.
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APPARITION DE L'INSTABILITE DANS UNE COUCHE FLUIDE HORIZONTALE SOUMISE
A UN CHANGEMENT ECHELON DE TEMPERATURE

Résumé— L’apparition de I'instabilité d’une couche fluide soumise 4 un brusque changement de température

superficielle est analysée par une version modifiée de I'hypothése du temps gelé. L’hypothése, selon laquelle

pour un grand nombre de Prandtl ies perturbations de température sont confinées 4 une profondeur

thermique effective, conduit a une simplification considérable dans la formulation du probléme de stabilité.

L’effet du nombre de Rayleigh sur le temps d’apparition est discuté et clairement expliqué. La relation entre

le nombre de Rayleign et le nombre d'onde calculée iui s'avcorde remarquablement bien avec la théorie de
I'amplification.



The onset of instability in a horizontal fluid layer

DAS EINSETZEN DER INSTABILITAT IN EINER WAAGERECHTEN FLUIDSCHICHT
AUFGRUND EINES TEMPERATURSPRUNGES

Zusammenfassung—Es wird das Einsetzen der Instabilitit in einer Fluidschicht, welche einer plétzlichen

Temperaturdnderung ausgesetzt ist, mit einer modifizierten Version der Hypothese des eingefrorenen

Zustandes untersucht. Die Annahme, daB fiir grofle Prandtl-Zahlen die TemperaturstSrungen auf die

effektive thermische Eindringtiefe beschrinkt sind, fiihrt zu einer erheblichen Vereinfachung in der

Formulierung des Stabilitdts-Problems. Der EinfluB} der Rayleigh-Zahl auf die Auslosezeit wird behandelt

und einleuchtend erklart. Die Beziehung zwischen der Rayleigh-Zahl und der hier berechneten Wellen-Zah!
stimmt mit der bestehenden Verstarkungstheorie bemerkenswert gut tberein.

BO3HUKHOBEHUE HEYCTOMYUBOCTU B FOPU3OHTANBHOM CJIOE XXUJIKOCTH
NMPHU CTYNEHYATOM M3MEHEHHWU TEMIIEPATVYPbI

AnnoTaums—MoauPHUHPOBAHHLIM METO0M, HCMOJb3YIOWMM THIIOTE3Y ‘‘3aMOPOXEHHOIO™” BPEMEHM,
NpPOAHAN3HPOBAHO BO3HMUKHOBEHHE HEYCTOMYHUBOCTH B CJIO€ HKHMIKOCTH NMPH MTHOBEHHOM M3MEHEHHH
TEMNEpaTypsl NoBepxHOCTH. PoOpMyNUPOBKY MpobieMbl YCTOHYHBOCTH MOXHO CYLLUECTBEHHO YNpO-
CTHTb, NPEANOIOXKHUB, YTO NPH DOABLIINX 3HAYEHMsAX uucaa [IpaHATAs TeMnepaTypHbie BO3MYLIEHHS
orpaHHdeHsl obyacTblo 3¢h¢eKTHBHOH TemioBoid riaybuHbl. PaccMoTpeHo u o6ocHOBaHO BaMsHHE
qucna Panes Ha BpeMs BO3HMKHOBEHHS HeycToHuMBOCTH. [lonyyeHHoe B paboTe COOTHOLIEHHE MEX Iy
4HCIOM Pajies ¥ BOJHOBBLIM YHCIOM JOCTATOMHO XOPOILO COIJIaCyeTCs ¢ CYLIECTBYIOLIEH JTHHEHHOi
Teopuei.
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